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Abstract
Thisworkoutlines an experimental and theoretical investigationof the effect ofmolybdenum (Mo)
doping on theoxygen vacancy formation andphotocatalytic activity ofTiO2.Analytical techniques such
as x-ray diffraction (XRD), Raman, x-ray photoelectron spectroscopy (XPS) andphotoluminescence (PL)
were used toprobe the anatase to rutile transition (ART), surface features andoptical characteristics of
ModopedTiO2 (Mo–TiO2). XRDresults showed that theARTwas effectively impededby 2mol%Mo
dopingup to 750 °C,producing 67%anatase and33%rutile.Moreover, the crystal growthofTiO2was
affected byModoping via its interactionwith oxygen vacancies and theTi–Obond.The formationof Ti–
O–MoandMo–Ti–Obondswere confirmedbyXPS results. Phonon confinement, lattice strain and
non-stoichiometric defectswere validated through theRaman analysis.DFT results showed that, after
substitutional dopingofMoat aTi site in anatase, theMooxidation state isMo6+ and emptyMo-s states
emerge at the titania conductionbandminimum.The emptyMo-d states overlap the anatase conduction
band in theDOSplot. A large energy cost, comparable to that computed for pristine anatase, is required to
reduceMo–TiO2 throughoxygen vacancy formation.Mo5+ andTi3+ are present after the oxygen
vacancy formation andoccupied states due to these reduced cations emerge in the energy gapof the
titania host. PL studies revealed that the electron–hole recombinationprocess inMo–TiO2was
exceptionally lower than that ofTiO2 anatase and rutile. Thiswas ascribed to introductionof 5s gap states
below theCBofTiO2 by theModopant.Moreover, the photo-generated charge carriers could easily be
trapped and localised on theTiO2 surface byMo6+ andMo5+ ions to improve thephotocatalytic activity.

1. Introduction

Titaniumdioxide (TiO2)has been identified as an interesting nanomaterial in the 21st century, owing to its
promising physical, chemical and optical properties for numerous eco-friendly applications, such aswater
treatment, air purification, energy production and self-cleaning coatings using solar light [1]. The
commercialisation of photocatalysis technology has gained significant interest in recent decades. The
photocatalysis concept has been successfully established for various commercial products, such as cement [2],
air purifier [3], paints [4], waterfilter [5], deodorisers [6], mosquito repellent fabrics [7], and antimicrobial
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coatings [8, 9]. Themost commonly existing crystalline polymorphs of TiO2 are anatase, rutile and brookite
[10–12]. Anatase is accepted to be themore active phase of TiO2 and is preferred by the ceramic industries to
fabricate light active antimicrobial indoor buildingmaterials such as ceramics, glass, tiles and sanitary surfaces
[13, 14]. This requires thermal stability of the anatase phase under typical ceramic processing conditions. TiO2

anatase ismainly fabricated at low calcination temperatures (∼500 °C) to prevent the anatase to rutile phase
transition (ART) [15–17], which produces the less photo-active rutile phase. The photo-activity of anatase arises
from its appropriate band edge positions, electron affinity, ionisation potential, and the long lifetime of charge
carriers [10, 12, 18].Moreover, transient photo-conductance analysis has revealed that the electron–hole
recombination phenomena in anatase (101) phase ismuch slower compared to rutile (110), which is credited in
part to the indirect band gap of anatase [11, 19].

The unit cells of anatase and rutile phases are composed of TiO6 octahedrawith titanium atoms at the centre
and oxygen atoms at the vertices [20]. Both anatase and rutile have a tetragonal primitive cell with space groups
I41/amd for anatase and P42/mnm for rutile [20]. The octahedral structures of the anatase crystal has a distorted
four edge sharing centre (4 corners and 4 edges), whereas the rutile owns a non-distorted two edge sharing centre
(2 corners and 6 edges) [21]. TheARTphase transformation is believed to occur via contraction of the c-axis,
changes in lattice parameters and structural reformation (breaking andmaking of bonds) [13, 21]. TiO2 anatase
phase is easily prepared at a calcination temperature around 500 °C, owing to its low surface free energy [13, 20].
The phase transformation of TiO2mostly relies on surface defects (oxygen vacancies, Ti interstitials), crystal
strain, particle size, existence of additives or dopants, and calcination conditions [20–22]. ART of TiO2 at high
temperature could be controlled by the addition ofmetal ions, suitable chemicalmodifiers and an appropriate
synthesismethod [13]. Dopingwithmetal ions is a one of the profitable ways to retard theART [14, 21, 23–31].
Metal ions could improve the thermal stability of TiO2 through the reduction in contact points, and nucleation
sites [32].

Generally, doping of an elementwith higher oxidation state compared to Ti4+would improve charge carrier
separation on the photocatalyst surface [33].Molybdenum (Mo;with a highest oxidation state ofMo6+) as a
dopant is inexpensive, non-toxic and has high solubility in the TiO2 anatase lattice [33]. The ionic radius of
Mo6+ is almost identical to that of Ti4+, being 0.062 nmand 0.068 nm, respectively, and, therefore,Mo6+ ions
could easily replace Ti4+ ions in the anatase crystal lattice [34, 35]. This kind of dopingwouldminimise the
lattice distortion [35, 36].Mo doping could also generate energy states within the band gap of TiO2 to enhance
the light absorption andminimise the electron–hole recombination [35–37]. Khan andBerk suggested that an
impurity level ofMo6+/Mo5+ (Mo6+ 4d0 1e–→Mo5+ 4d1) could be generated below the conduction band
(CB) of TiO2. During photoexcitation, electron transition could occur from the 0 2p valence band (VB) of TiO2

into theMo6+/Mo5+ impurity level and then to theCBof TiO2 through d(Mo5+)–d(Ti) transition [38]. The
photo-induced electrons could initiate the reduction of Ti4+ ions to Ti3+ states at the surface.Moreover, the
calcination process creates oxygen vacancies. The substitution ofMo dopant in the TiO2 crystal lattice could
strongly influence the number of oxygen vacancies due to the charge compensation. The formation of Ti3+

surface defects and oxygen vacancies could amplify the photocatalytic efficiency ofMo–TiO2 via creating new
energy levels and capturing of CB electrons at the surface after the relaxation process [38].

Kemp andMcIntyre [39] investigated the photocatalytic activity ofMo–TiO2 for the degradation of
polyvinylchloride. XRD results revealed that 34%of TiO2 anatase content was retained by 1%Modoping at a
600 °Ccalcination temperature. Fisher et al [40] studied the antimicrobial property ofMo–TiO2 coated films on
the soiled surfaces in a beer industry under visible light irradiation. The coatings were fabricated on a stainless
steel substratumby amagnetron sputtering ion plating techniquewith the aim to avoidmicrobial fouling. The
bacteriumwas selected through the isolation ofmicroorganisms on the soiled surface.Mo–TiO2 coated films
showedfive-log reduction againstEscherichia coli under dark and light conditions.Mo–TiO2 coatings could
function as a secondary barrier to restrain themicrobial contamination. Recently,Miljević et al [33] examined
the photocatalytic (coated on glass substrate) and self-cleaning (coated on brick and stone) efficiency of
Mo–TiO2-layer double hydroxide (LDH)nanocomposite coatings under visible light irradiation. The results
showed that the photocatalytic and self-cleaning properties ofMo–TiO2-LDH (Mo/Ti=0.03mass ratio)were
higher than that of TiO2-LDH. After 24 h of light irradiation, thewater contact angle (WCA) ofMo–TiO2-LDH
coated brick (87°) and stone (36°)was significantly decreased as compared to uncoated brick (105°) and stone
(58°), suggesting hydrophilicity of the coating. In another study, Yoon et al [41] reported the photocatalytic
activity of transparentMo–TiO2 (Mo=3 at%)films templated using cellulose nanocrystals (CNCs). The
optical analysis showed that the visible light absorption capability ofMo–TiO2-CNCswas significantly higher
than bare TiO2.

The above studies show thatMo is a potential dopant to improve the photocatalytic performance of TiO2.
Modoping could influence the surface characteristics, oxygen vacancies, crystallinity and formation of Ti3+

centres, however, there is still no comprehensive studies on the antimicrobial activity of high temperature stable
anataseMo–TiO2. Thus, the focus of the present investigation is to study systematically the influence ofMo
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doping on the phase stability of anatase, formation of oxygen vacancies, and the photocatalytic activity to show
thatMo doping could preserve the anatase content at high calcination temperature and thus enhance the activity
of TiO2. A comprehensive analysis on the relationship between the dopant concentration and the surface
characteristics of TiO2 is discussed. Electron–hole recombinationwas studied through photoluminescence (PL)
spectra. Density functional theory (DFT) calculations were also performed to examine theMooxidation state
and the formation energy of oxygen vacancies and its role in the oxidation states of the cations and the resulting
electronic structure, which is vital for the photocatalytic activity. The photocatalytic activity ofMo-doped
anatase was studied using the disinfection of total bacteria inwastewater underUVA-LED light irradiation. The
result demonstrates thatMo is a significant dopant to enhance the photocatalytic activity of TiO2 anatase.

2.Materials andmethods

Analytical grade chemicals were used in this study. All the chemicals were used as receivedwithout further
purification.

2.1. Synthesis ofMo–TiO2

In a typical procedure to prepare 0.5 mol%Mo–TiO2, titanium isopropoxide (TTIP; 41.81 ml)wasmixedwith
isopropanol (200 ml) under stirring for 15 min, denoted as solutionA. In themeantime, solution Bwas prepared
bymixing 0.1225 g of ammoniummolybdate tetrahydrate ((NH4)6Mo7O24.4H2O) in 200 ml of double distilled
water under vigorous stirring for 15 min. Afterwards, solution Bwas added drop by drop into solutionA to
initiate the hydrolysis process under stirring for 30 min. The resultantmilkywhite solutionwas dried at 100 °C
for 24 h. The amorphous powders were then calcined at various temperatures (500 °C, 600 °C, 700 °C, 750 °C,
and 800 °C) in amuffle furnace with a heating rate of 10 °Cmin−1 for 2 h. In a similar fashion, 1 mol%,
1.5 mol% and 2mol%ofMo–TiO2 samples were also synthesised. Pure TiO2 (0 mol%Mo–TiO2)was
synthesised by the same procedure without addition of anyMoprecursor.

2.2.DFT calculations
DFT calculations were executed by theVASP 5.4 [42, 43] code, using projector augmentedwave [44, 45] (PAW)
potentials to describe the core-valence interaction. The exchange-correlation functional is estimated by the
Perdew-Wang functional (PW91) [46]. The potentials for titanium (Ti), oxygen (O) andmolybdenum (Mo)
explicitly account for 12, 6 and 12 valence electrons, respectively. The energy cut-off for the planewave basis set
is 400 eV and the convergence criteria for electronic and ionic relaxations are 10−4 eV and 0.02 eV Å−1. The bulk
lattice parameters of the anatase unit cell were computed as: a=3.791 Å and c=9.584 Å; these compare with
experimental values of a=3.785 Å and c=9.514 Å [47]. A (3×3×1) anatase supercell, with 108 atoms,
was constructed using the computed lattice parameters given above for undoped anatase andMowas
substitutionally doped at a Ti site to give a dopant concentration of 2.8 at%.

A (3×3×4) k-point sampling gridwas used. The calculations were spin-polarised and no symmetry
constraints were imposed. The calculations implemented an on-siteHubbard correction (DFT+U) [48, 49] to
describe the partiallyfilled Ti 3d andMo 4d states;U=4.5 eV is applied to Ti 3d states andU=4.0 eV is
applied toMo 4dwith these choices forU informed by previous studies [50–54].

We considered reduction ofMo-doped TiO2 via oxygen vacancy formation. To identify themost stable site
for vacancy formation,multiple oxygen sites of theMo-doped structure were considered, taking into account
the symmetry of the system. For each oxygen site the vacancy formation energy was computed from the
following equation:

( ) ( ) ( ) ( )/= + -- - -E E E EMo Ti O 1 2 O Mo Ti O , 1vac
x x y x x1 2 2 1 2

where ( )- -E Mo Ti Ox x y1 2 denotes the total energy ofMo–TiO2with a single oxygen vacancy. ( )-E Mo Ti Ox x1 2

represents the total energy ofMo–TiO2without an oxygen vacancy. The oxygen vacancy formation energy is
referenced to half the total energy of gas-phaseO2.

The oxidation states were analysed through Bader charge analysis [55] and computed spinmagnetisations.
Given the lack of such analysis in the available literature and to provide benchmark-computed values for the
Bader charge ofMo inMo–TiO2, calculations were performed on bulkMoO3 andMoS2 as referencematerials.
In the former system, the Bader charge forMowas computed as 9.2 electrons, towhichwe ascribe an oxidation
state ofMo6+; for the latter system, the computed Bader chargewas 10.7 electrons, corresponding toMo4+.

2.3. Photocatalytic wastewater disinfection
The photocatalytic activity ofMo–TiO2 (0.1 g l

−1)was assessed by the disinfection ofmicrobes inwastewater
(secondary effluent of an urbanwastewater (WW) treatment plant,Medinaceli, Soria, Spain) under LED light
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irradiationwith different UVAwavelengths. The characteristics of effluentwere determined by the standard
methods of wastewater analysis (table S1 is available online at stacks.iop.org/JPMATER/3/025008/mmedia).
The parameters such as pH, conductivity, total volatile solids, total suspended solids, chemical oxygen demand,
andmicrobial count (Escherichia coli, non coliforms and other coliforms)weremeasured. Two parallel lines of
10UVALED lights (SeoulViosys, Republic ofKorea)ofparticularwavelength (385 and 395 nm), whichwere
widely scattered to equally cover the reactor surface, was used as the irradiation source. 250 mAof current intensity
was used in each LED light setup. Thiswas equivalent to consuming 8.38Wand8.25Wof electrical power by the
385 nmand395 nmLED lights, respectively. The lampwas located at a distance of 4.5 cm from thewater surface.
Under this experimental condition, the actual irradiatedpowerwas determinedbypotassium ferrioxalate
actinometrymethod [56, 57]. The results showed that 1682.8±77.1 and1607.7±56.1μmolm−2 s−1 of photons
were emitted from the 385 and 395 nmLED lights, respectively. All thematerials used in this experimentwere
previously sterilised in an autoclave at 100 °Cand1.5 bar for 40 min 100ml ofWWwas treated in each trial in a
glass reactor. 1.0mlof aliquotwaswithdrawn from the photo-reactor at regular time intervals (such as 4, 8, 15, 30,
45, and60min) tomeasure the existence of bacteria, in termsof colony-formingunits (CFU), by ISO9308-1:2014
method [58].

Atfirst, 0.5 ml of theWWsamplewasmixedwith 0.5 ml of saline water (0.9 g l−1NaCl in distilledwater).
Then the sampleswere filtrated through 0.45μmwhite-griddedmixed cellulose ester filter (GN-6Metricel®,
Pall, NewYork, USA) in a laminar flowhood to avoid external contamination. Chromocult® agar plates
(Millipore,Merck, Darmstadt, Germany)were used as themedia to grow the bacterial colonies. CFUswere
enumerated after incubating the plates at 36 °C±2 °C for 21–24 h. There are three types of colonies thatmay be
identified to grow onChromocult® agar plates such asEscherichia coli (dark-blue to violet colour); other
coliforms, namely: Enterobacter aerogenes,Citrobacter freundii, (pink to red colour); and some non-coliform
bacteria, namely: Enterococcus faecalis,Pseudomonas aeruginosa (colourless).

2.4. Characterisation
ARTofMo–TiO2was investigatedwith the help of x-ray diffraction (XRD) andRaman spectroscopy. The
crystallinity and phase changes were studied throughXRD (SiemensD500) usingCuKα radiation
(λ=0.154 18 nm) in the 2θ range of 10°–80°. Spurr equationwas applied to determine the anatase and rutile
phase composition as follows:

[ ( ) ( )]
( )

/
=

+
F

I I

1

1 0.8 101 110
, 2R

A R

where FR, IA(101) and IR(110) are the rutile phase percentage, intensity of anatase peak and intensity of rutile
peak, respectively. Scherrer equationwas used to determine the average crystallite size. Raman spectra of
Mo–TiO2 samples weremeasured for an acquisition period of 3 swith a grating of 300 g mm−1. The surface
chemical composition, and the bonding interactions ofMo–TiO2were analysed using x-ray photoelectron
spectroscopy (XPS)withK-alpha+ spectrometer. PL analysis was recorded to study the effect ofMo doping on
the lifetime of charge carriers (excitationwavelength of 350 nm).

3. Results and discussion

The lattice oxygen vacancies and the formation of energy levels inMo–TiO2 frameworkwere studied viaDFT
calculations. The structural, optical and surface characteristics ofMo–TiO2were examined in detail usingXRD,
Raman, PL andXPS spectra. The phase percentages ofMo–TiO2 at different calcination temperatures were
investigated byXRD. The effect ofMo doping on the changes of TiO2 lattice parameters were examined via
Raman spectroscopy. The bonding interactions and oxygen vacancies were studied in detail by XPS and PL. Pure
TiO2 anatase (calcined at 500 °C) and rutile (calcined at 700 °C)were used as reference for comparison.

3.1.DFT
The relaxed structure ofMo-doped TiO2 anatase is shown infigure 1(a). The computed Bader charge forMo is
9.13 electrons, corresponding toMo6+ based on comparisonswith the Bader charge computed forMo in bulk
MoO3.Mo–Odistances are 1.94 Å and 2.01 Å for oxygen ions in equatorial and apical positions, respectively.
These values are almost identical to those computed for Ti–Odistances in the undoped supercell, 1.94 Å and
2.00 Å, owing to the similar ionic radii ofMo6+ andTi4+.Mo–Obond lengths are comparedwith
experimentally determinedTi–Odistances of 1.94 and 1.96 Å [47], for apical and equatorial oxygen sites.

We consider reduction of the system via oxygen vacancy formation as such defects are implicated in theART
[23, 59–61]. Themost stable site for the formation of an oxygen vacancy is an equatorial site of theMo-dopant
and the relaxed geometry and excess spin density are shown infigure 1(b). The formation energy is 5.05 eV and
this ismore stable than the nextmost stable vacancy by 0.1 eV. By comparison, the vacancy formation energy in
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the undoped anatase supercell is 5.26 eV and soMo-doping, at this concentration, will not promote vacancy
formation to a significant degree.

After formation of a neutral oxygen vacancy, two electrons are released and these localise in the vicinity of the
vacancy site, as shown in the excess spin density plot offigure 1(b). The computed Bader charge forMo increases
from9.13 electrons, in the stoichiometric system, to 9.91 electrons in the reduced system, indicating reduction
toMo5+. The spinmagnetisation in the d-orbital ofMo is 1.1μB. For one of the Ti ions towhich the removed
oxygenwas bound, the Bader charge increases from9.61 to 9.91 electrons. This Ti ion has a computed spin
magnetisation of 0.2μB. These results suggest that the excess charge occupies the vacancy site rather than
localising at only theMo andTi ions (figure 1(b)). Typically, Ti3+ ions exhibit computed Bader charges of
10.0–10.5 electrons and spinmagnetisations of 0.8–1.0μB [23, 62]. The values computed for the partially
reduced Ti ion in the present work are consistent with our previous study of In-doped TiO2 [59]. This study
showed excess charge distributed over the vacancy site in the reduced system, rather than localised at cation sites;
the computed Bader charge and spinmagnetisation for Ti sites neighbouring the vacancywere 9.7/9.8 electrons
and 0.1/0.2μB, respectively. The excess spin density plot infigure 1(b) shows that the charges are distributed
overMo andTi and the electron density extends towards the vacancy site.

The projected electronic density of states (PEDOS)were computed for the stoichiometric and reduced
system,with one oxygen vacancy, and these are shown infigure 2. For the stoichiometric system (figure 2(a)),
Mo s-states emerge at theCBMof the TiO2 host and theMo d-states overlapwith the titania CB. The emergence
ofMo-derived defect states below theCBMwas reported by theGGA studies ofMo-doped TiO2 [36, 63].Mo d-
states below theCBMwere identified in these studies but therewas no discussion of theMo s-states. In the
present work, we find thatMo d-states lie above theCBMand thismay be ascribed to the implementation of a
HubbardUonMo d-states which shifts these states with respect to the TiO2CBM.After vacancy formation and
reduction of Ti andMo, occupied Ti andMo d-states emerge in the band gap at 1.65 eV above the valence band
maximum, as shown infigures 2(b) and (c).

3.2. XRD
XRDpatterns ofMo–TiO2 samples calcined at 600 °C, 700 °C, 750 °C and 800 °Care shown infigure 3. The
results revealed that the anatase phase of TiO2 is significantly preserved up to 750 °CbyModoping [39] (table 1).
A small red shift is observed for the anatase peakwhen theMo content is increased from0 to 2 mol%, suggesting
the dopant-induced lattice distortion [38]. The intensity andwidth of anatase peaks are strongly influenced by
Mo concentration. The average crystallite size of as-synthesisedmaterials is given in table 2. For 600 °C, the
average crystallite size of anatase is decreasedwith an increase ofMo content, indicating the crystal growth is
restrained byMo content. The existence ofMo ions in the TiO2 lattice could distribute point defects as

Figure 1.Relaxed geometry ofMo-doped TiO2 anatase for (a) stoichiometricMo–TiO2 and (b) after formation of a single, reducing
oxygen vacancy. The vacancy site sits at an equatorial position relative to theMo-dopant and the formation energy is included in the
inset of panel (b). The yellow iso-surface encloses spin densities of up to 0.02 eV Å−3. The site of the removedO ion is indicated by the
black circle and dashed black lines show the ions towhich the removed oxygenwas bound. In this and subsequentfigures, Ti is
represented by grey spheres, O by red andMoby blue.
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Figure 2.Computed PEDOS for (a) stoichiometricMo-doped TiO2 anatase and (b) reducedMo-doped TiO2 anatase, with one oxygen
vacancy. Panel (c) shows the occupied Ti3+ andMo5+ states which emerge in the band gap after vacancy formation.

Figure 3.XRDpatterns ofMo–TiO2 at various calcination temperatures.
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heterogeneous nucleation sites, whichmay restrict the crystal growth [41, 64]. Besides, the number of inter-
granular contacts between the nearby titania grainsmay decrease when increasing the concentration ofMo [38].
For 700 and 750 °C, the average crystallite size of TiO2 anatase does not varymuchwithMomol% and the size is
increased in some cases such as 1 mol%Mo–TiO2 (700 °C) and 1.5 mol%Mo–TiO2 (750 °C). The doping sites
of TiO2 aremainly decided through the ionic radii, coordination number and valence electron of the dopant
[65]. The ionic radius ofMo6+ (0.062 nm) is close to that of Ti4+ (0.068 nm), henceMo6+ could easily substitute
Ti4+ ions in the anatase lattice, suggesting changes in lattice parameters and crystal plane distance [65–67]. The
increase ofMo concentration above 2 mol% results in the formation ofmolybdenum trioxide (MoO3). The
major peaks ofMoO3 are analogous to those of anatase (101) and rutile (110) peaks. It could be difficult to
distinguish the anatase crystalline peaks for samples with highMomol% (e.g. 4 mol%, 8 mol%, 16 mol%, etc).
Consequently, 2 mol%ofMo is sufficient tomaintain the anatase percentage of TiO2 at high calcination
temperatures.

3.3. XPS
The binding interactions and oxidation state of elements inMo–TiO2were analysed byXPS. Ti 2p, O 1s,Mo 3d
scans of pure TiO2 (0 mol%Mo–TiO2 at 500 °C) and 2 mol%Mo–TiO2 at 750 °Care displayed infigure 4. The
representative spin–orbit coupling of Ti 2p peaks such as Ti 2p3/2 andTi 2p1/2 are observed at 458.86 eV and
464.53 eV, respectively (figure 4(a)) [68, 69]. This is ascribed to the existence of titanium inTi4+ state. TheO1s
spectrumof TiO2 is composed of two peaks. O 1s peak is divided into two sub components by peak fitting. The
peak located at 530.03 eV is attributed to lattice oxygen in Ti–Obond of TiO2 [69]. The surfaceO–Hgroup of
TiO2 is detected around 531.94 eV (figure 4(b)) [68, 69]. The peak positions of Ti 2p andO 1s are slightly
increased for 2 mol%Mo–TiO2 compared to pure TiO2 (figures 4(c) and (d)). This is ascribed to high
electronegativity ofMo compared to Ti, suggesting a lattice shift by the substitution ofMo6+ for Ti4+ ion [34].
Oxygen vacancies would also be created by this kind of replacement [34, 68], however, this was not observed in
ourDFT calculations.Moreover,Mo ionsmay strongly interact with oxygen atoms or oxygen vacancies via
chemical bonds in the anatase crystal lattice, suggesting the formation of structural defects such as Ti–O–Moand
Mo–Ti–Obonds byModoping [35].

Table 1.The phase percentages ofMo–TiO2 samples calcined at various temperatures.

500 °C 600 °C 700 °C 750 °C 800 °C

Samples Anatase Rutile Anatase Rutile Anatase Rutile Anatase Rutile Anatase Rutile

0.0%Mo–TiO2 100 — 7 93 — 100 — 100 — 100

0.5%Mo–TiO2 100 — 30 71 7 93 4 96 — 100

1.0%Mo–TiO2 100 — 84 16 52 48 15 85 — 100

1.5%Mo–TiO2 100 — 100 — 87 13 14 86 — 100

2.0%Mo–TiO2 100 — 100 — 87 13 67 33 — 100

Table 2.The average crystallite size ofMo–TiO2.

Particle size (nm)

Sample Temperature (°C) Anatase Rutile

0.0%Mo–TiO2 600 °C 29.918 35.715

0.5%Mo–TiO2 600 °C 24.908 34.734

1.0%Mo–TiO2 600 °C 23.060 36.316

1.5%Mo–TiO2 600 °C 19.129 —

2.0%Mo–TiO2 600 °C 18.729 —

0.0%Mo–TiO2 700 °C — 36.234

0.5%Mo–TiO2 700 °C 24.246 36.899

1.0%Mo–TiO2 700 °C 28.0769 35.430

1.5%Mo–TiO2 700 °C 24.469 34.6589

2.0%Mo–TiO2 700 °C 26.248 —

0.0%Mo–TiO2 750 °C — 36.661

0.5%Mo–TiO2 750 °C — 36.000

1.0%Mo–TiO2 750 °C 28.0769 36.580

1.5%Mo–TiO2 750 °C 38.0136 33.068

2.0%Mo–TiO2 750 °C 28.0700 36.362
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The peaks observed at 233.28 eV and 236.40 eV are accredited toMo3d5/2 andMo3d3/2 ofMo6+

(figure 4(e)). The sub components detected by peak fitting at 231.84 eV and 235.42 eV are ascribed toMo3d5/2
andMo3d3/2 ofMo5+. XPS results showed that the percentage ofMo6+ is higher than that ofMo5+. The
existence ofMo5+ denotes that the oxygen atoms in the anatase lattice are inadequate to reinforceMo6+ ions
[35] and based onDFT calculations this is consistent with reduction toMo5+ afterOV formation. A gap state (5s
state ofMo)may be generated below theCBof TiO2 byModoping. This is beneficial to restrain the electron–
hole recombination process and prolong the life time of charge carriers. The oxidation-reduction potential of
Ti4+/Ti3+ (0.1 eV) is lower than that ofMo6+/Mo5+ (0.4 eV) [38]. During light irradiation,Mo6+ could react
with photo-induced hole to formMo7+, which is highly unstable. ConsequentlyMo7+ can further react with
surface adsorbed –OHgroups to generate ·OHandMo6+ (Mo7++OH–→Mo6++·OH) [38].

Figure 4.XPS of 0 mol%Mo–TiO2 at 500 °C ((a)Ti 2p and (b)O1s) and 2 mol%Mo–TiO2 at 750 °C ((c)Ti 2p (d)O1s (e)Mo3d).
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3.4. Raman spectra
The effect ofModoping on the structural changes of TiO2 anatase was interpreted throughRaman spectroscopy.
Figure 5 shows theRaman spectra of pure anatase (0 mol%TiO2 calcined at 500 °C), rutile (0 mol%TiO2

calcined at 700 °C) andMo–TiO2 samples (calcined at 700 °C and 750 °C). The results showed that Raman
modes of TiO2 anatase are strongly influenced byModoping. Ramanmodes such as Eg,B1g, andA1g aremainly
originated from symmetric stretchingO–Ti–O, symmetric bendingO–Ti–Oand anti-symmetric bendingO–
Ti–Ovibrations, respectively [70]. Among them, Eg, andA1g vibrations aremore responsive to oxygen vacancies.
Raman activemodes of TiO2 anatase (space group: D19

4h (I41/amd)) and rutile (space group: D14
4h (P42/mnm)) are

observed at their corresponding positions. Eg,B1g,A1g orB1g andEg Raman bands belonging to anatase are
observed around 135.02 cm−1, 388.61 cm−1, 508.18 cm−1 and 631.82 cm−1, respectively (table S2). The
significant Raman bands associatedwith rutile are noted around 439.26 cm−1 and 602.94 cm−1, respectively. As
compared to pure anatase, the Eg peaks ofMo–TiO2 are red shiftedwith an increase of line width [71]. The peak
shift is explained by a number of competitivemechanisms, such as phonon confinement, lattice strain/
distortion and non-stoichiometric defects due to oxygen vacancies [72–75]. The peak broadening ofEg with
respect to the concentration ofMo is ascribed to changes in anatase crystal lattice, and the cleavage of vibrational
phononmode [76]. According to theHeisenberg uncertainty principle, the phononmomentumof distribution
(ΔP) increases when the particle size decreases [73]. Consequently, the changes in particle sizemay influence the
phonon frequency of Ramanmodes, leading to peak broadening [73]. As theMo content is increased, the
number of oxygen atoms to create Ti–Obonds is reduced, indicating a decrease in force constant of the bond
[73]. This could induce a red shift of Raman peak, because the force constant of a band is inversely proportional
to its wavenumber [73]. Choudhury et al [73] suggested that the red shift is related to the reduced lattice size and
diminishing of Ti–Obond. Liu and Syu [77] indicated that the red shift and peak broadening are attributed to
oxygen deficiency in the crystal.

3.5. PL
PL spectra ofMo–TiO2 samples calcined at 700 °Care shown infigure 6.Mechanisms such as electron–hole
recombination or separation and electron–phonon scattering are involved in the PL process [78]. PL spectrum
of TiO2 anatase primarily originates fromoxygen vacancies, surface defects, and self-trapped excitons [78]. A

Figure 5.Raman spectra of (a) and (b)Mo–TiO2 at 700 °C, (c) and (d)Mo–TiO2 at 750 °C.
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peak at ca. 380 nm is ascribed to the band–band transition in TiO2 [79, 80]. The characteristic radiative
recombination of self-trapped excitons confinedwithin the TiO6 octahedra and oxygen vacancies is observed as
a broad shoulder peak at ca. 419 nm [80]. The peaks found in the range of 400–500 nmoriginated from the
oxygen vacancy related defect centres [80]. The blue-green emission peak observed around 485 nm is accredited
to the charge transfer fromTi toO atom inTiO6 octahedra associatedwith the oxygen vacancies [78]. The peaks
at ca. 460 nmand 535 nmare correlated to trapped or bound electrons to the oxygen vacancy centres [79]. PL
peak in the range of 485–490 nm is ascribed to the charge transfer process fromTi3+ to oxygen anion in TiO6

–8

complex coupledwith surface oxygen vacancies [38]. The defect states or oxygen vacancy colour centres are
denoted as F, F+ and F2+ for two-trapped electrons, one-trapped electron and no-trapped electrons, respectively
[79, 80]. PL quenching or enhancingmechanism results from the non-radiative oxygen vacancy colour centres.
The peaks around 440 nmand 450 nmare associated to F or F2+ colour centres [80]. The dominant peaks
around 460 nmand 485 nmare ascribed to F+ colour centre [80].

In our samples, it is clear that the PL emission peaks of pure TiO2 are quenched by introduction of theMo
dopant. The intensity of the PL peaks of the as-synthesised samples are in the order anatase (0%Mo–TiO2 at
500 °C)>rutile (0%Mo–TiO2 at 700 °C)>0.5Mo–TiO2>2Mo–TiO2>1.5Mo–TiO2>1Mo–TiO2.Mo
doping can introduce gap states below theCBof TiO2 and this could suppress the electron–hole recombination
process. The effect ofMo concentration on oxygen vacancies is clearly observed in terms of PL peak shift. Ti–O
bond in the anatase lattice is disturbed byModoping. The impact on oxygen vacancies of TiO2 could be
attributed to the effect of calcination temperature [38]. The concentration of oxygen vacancy centresmay vary
with respect to the concentration ofMo [79]. Consequently, the photo-generated electrons could be easily
trapped and localised in the oxygen vacancies, reducing the probability of photo-generated electron–hole
recombination [79]. In addition to oxygen vacancies, the PL intensity could also be influenced through the
mobility of carriers [79].

3.6. Photocatalytic wastewater disinfection
The photocatalytic activity of 0%molMo–TiO2 (calcined at 500 °C) and 2%molMo–TiO2 (calcined at 750 °C)
for the specific removal of total bacteria inWWunder 385 nmand 395 nmUVALED light irradiation is
displayed infigure 7. The percentages ofN/N0 values were plotted against the irradiation time.N andN0 are the
number of bacteria (CFU/ml) at irradiation time ‘t’ and 0, respectively. The efficiencywas denoted by a
parameter ‘b’ (rate coefficient) from the exponential decay curves. In the case of 385 nmLED light, the total
bacteria removal for 2%molMo–TiO2 is∼1.5 times higher than that of TiO2.However, the total bacteria
removal for 2%molMo–TiO2 is∼2.8 times higher in comparisonwith pure TiO2 under 395 nmLED light
irradiation. The disinfection efficiency ofMo–TiO2 ismaximal at 395 nmLED light compared to that of 385 nm
LED light. The total disinfectionwas achieved in almost 30 min of LED light irradiation. The high activity of
Mo–TiO2 under 395 nmLED light is attributed to themaximum light absorptionwith respect to its specific
band gap and electronic properties, suggesting the generation ofmore charge carriers responsible formicrobial
disinfection [81]. The photocatalytic activity could be influenced by the competitive reaction between the

Figure 6.PL spectra ofMo–TiO2, anatase and rutile.
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microbes and other organicmatter existing in theWW [82].Mo doping could enhance the surface active sites
and endorse the interfacial charge transfer process [81, 83]. TheModopant could influence the crystallite size
and surface active sites of TiO2 to promote the adsorption ofmicrobes on the photocatalyst surface [84]. The
formation gap states byModopant could extend the lifetime of photo-induced charge carriers. The poor
disinfection for photolysis experiments is ascribed to the protection of remaining active cells by themetabolites
released from the destructed cells [83, 85]. The disinfectionmechanismofmicrobes inWWmay be attributed to
the oxidative degradation of cells by reactive oxygen species, increase of cell permeability, leakage ofminerals,
DNA/RNAdamage, and inhibition of protein synthesis [83, 86, 87].

XRDandRamananalysis clearly validate that the anatase crystal structure ofTiO2 iswell sustained after doping
withMoat high calcination temperature.DFT studies showed that gap states (such as s- andd- states) could be
createdbetween theVBandCBofTiO2, suggesting enhanced charge carrier separationon thephotocatalyst surface.
Ramananalysis suggested that the lattice size andTi–Obond strength aremodifiedbyModoping.The formationof
oxygen vacanciesmaybe variedwith respect to theModopant concentrationbecause of the cleavage ofmoreTi–O
bonds, indicating the contractionofO–Ti–Obondangle [73]. Thephoto-generated electrons couldbe capturedby
Mo6+, impurity levels, Ti3+ centres, and shallowordeep traps [38]. The trapped electronswould further reactwith

Figure 7.Photocatalytic disinfection efficiency of TiO2 andMo–TiO2 underUVALED light irradiation.
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surface adsorbedoxygen to createmore reactive oxygen species [38]. PL analysis confirmed that the charge carrier
mobilitywould be decreased as they interactwith thedopants or defect centres, suggesting enhancement in the
charge–carrier separation to improve thephotocatalytic activity.Modopingdoesnot introduce anynewpeaks in the
PL spectrumofTiO2.Nevertheless, thePL intensity ofMo–TiO2peaks are smaller compared to anatase and rutile,
suggesting themodificationof surface defects and a reduction in thenumber of recombination centres [38]. The
photocatalytic activitywas tested for thedisinfectionofmicrobes in a realWWsystemrather thanusing a simulated
wastewater system.Thedisinfection efficiency ofMo–TiO2was superior compared topureTiO2.Thephotocatalytic
experiments also demonstrated thatModoping could improve thephoton absorptionofTiO2.Thehigh
photocatalytic activity ofMo–TiO2 is accredited to, surface characteristics, crystallinity, formationof gap states,d–d
electron transition, and the existence of high anatase content [34, 38].

4. Summary

The effect ofModopingonoxygenvacancy formation, anatase phase stability andphotocatalytic activity ofTiO2has
been successfully investigated.DFTcalculations reveal that theModopant is present in anatase asMo6+, and is
incorporated into the latticewithnodistortions to the geometry, due to the similar ionic radii ofMo6+ andTi4+.
Analysis of the computedPEDOSplot for the stoichiometric system indicates thatMo5s states emerge below the
CBMofTiO2.The computed energy required for oxygen vacancy formation inMo–TiO2 is comparable to that of un-
doped anatase and, hence, vacancies shouldbepresent in thedoped system in similar concentrations topure anatase,
under equivalent preparation conditions.After vacancy formation, the dopant is reduced toMo5+ andTi3+ is also
present.This leads to the emergence of occupiedMo4d andTi 3d states in the energy gap.Thepeak shift in the
Raman spectra revealed the influenceof oxygen vacancies on the anatase crystal lattice.XPS results show the existence
ofMo5+ in addition toMo6+ inMo–TiO2 samples.The formationof Ti–O–MoandMo–Ti–Obonds are also
confirmed throughXPSanalysis. The results also suggest lattice distortions due to substitutionofMo6+ forTi4+ ion.
The electron transfer process betweenTiO2 and surface oxygenvacancies is confirmedbyPLanalysis. The electron–
hole recombination isminimised via the appearance ofMoelectronic states below theCBofTiO2.The life timeof
photo-induced charge carriers is extended throughMo6+, impurity levels, andTi3+ centres. Thephotocatalytic
activity ofMo–TiO2was testedwith awastewater froma secondary effluent. Thefindings suggest thatMo–TiO2 is an
excellent candidate for the fabricationof indoor buildingmaterialswith light active antimicrobial characteristics.
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